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Abstract

This paper presents the application of the ®nite element reliability method to the evaluation of the statistical

properties of localisation phenomena. Material and boundary constraint imperfections are considered. The latter are

imposed through Lagrange multipliers. The evaluation of the sensitivity to the stochastic basic variables, which is

needed in the reliability method, is outlined. Numerical simulations of mode-I and mode-II localisation phenomena are

presented. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Stochastic aspects; Localised failure; Boundary imperfection

1. Introduction

When failure of solids and structures is simulated, di�culties appear that cast doubt on the validity of
the results. On one hand, classical continuum models become physically meaningless when material de-
terioration leads to a progressive stress reduction (softening behaviour). This can be remedied by means of
enhanced continuum models (De Borst et al., 1993), which stem from a better understanding of the de-
gradation phenomena. On the other hand, failure of solids can take place suddenly in states of homoge-
neous deformation. As the actual failure mechanism is often initiated by heterogeneity in the material,
computer simulations cannot reproduce this behaviour unless an imperfection is manually supplied
somewhere in the solid.

Incorporation of heterogeneity in the mathematical model requires the use of random quantities. A
meaningful technique for this purpose is the ®nite element reliability method of Der Kiureghian and Ke
(1988), in which the response statistics are analysed by means of probability approximations at the likely
con®gurations of imperfections. For the particular case of localisation analysis, this method has been
applied successfully to study the e�ect of stochastic distributions of strength and other material properties
(Guti�errez, 1999; Guti�errez and De Borst, 1999a,b).

Another possible source of imperfections in a structure can be the loading system. For the particular case
of experimental set-ups, excentricity or horizontality errors in the loading platens can lead to erroneous
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conclusions on the mechanical behaviour of the analysed specimen. In order to simulate the in¯uence of
these errors numerically, stochastic quantities can be introduced in the description of the loading system.

The loading system is usually modelled as a set of a�ne boundary constraints. A�ne boundary con-
straints have traditionally been imposed through transformation matrices in the ®nite element equations.
This method can be troublesome when the involved degrees of freedom are a�ected by more than one
constraint (Schreyer and Parsons, 1995). Other possibilities (Barlow, 1982) are the penalty method, which
can be inaccurate, and the Lagrange-multiplier method, which is regarded as costly from a computational
point of view. The advent of e�cient solution techniques for sparse systems of equations has led to a re-
valuation of the Lagrange-multiplier method as a versatile technique to impose a�ne constraints, with
application to linear as well as non-linear problems (Rodr�õguez-Ferran and Huerta, 1999). The formal
simplicity of the Lagrange-multiplier method makes it possible to introduce a stochastic description of the
boundary constraints in a straightforward manner, and thus to carry out reliability computations, which
account for imperfections of the loading system.

This paper is outlined as follows: after a brief introduction of the ®nite element reliability method, the
evaluation of the equilibrium path in presence of a�ne constraints imposed through Lagrange multipliers is
formulated. Then, the computation of the sensitivity of the equilibrium path to the material properties and
boundary constraints, which is needed in the reliability method, is treated for the particular case of path-
dependent material models. Application examples of mode-I as well as of mode-II localisation phenomena
are presented.

2. The ®nite element reliability method

The equilibrium path of a solid X in quasi-static loading conditions is furnished by any pair of processes
�u; t�, representing the displacement ®eld and the boundary traction ®eld, respectively, that satis®es the
equations

rr � 0 in X;

r �F�e;w� in X;

e � 1

2
ur
h

� �ur�T
i

in X; �1�
u � û in Xc � X [ oX;

rTn � t in oXt � oX

at any instant s. In this equation, the processes - and e represent the stress and strain ®elds, w are the
material properties, F represents a function in general, û are prescribed a�ne constraints, n is the outward
normal vector of oX and T represents the transpose symbol. Body forces have been neglected for simplicity.
If the boundary forces are restricted to a fraction k of a ®xed traction pattern t̂, Eq. (1) de®nes a trans-
formation from �û; t̂;w� to the equilibrium path, which is then represented by �u; k�. This transformation
will be referred to as the mechanical transformation and is represented by T in the sequel.

If the ®elds �û; t̂;w� include random quantities, the equilibrium path and any characteristic Q of it is
random as well. The distribution of Q should be evaluated through the mechanical transformation T. Since
this transformation is of a functional nature, numerical approximations must be used in general. The
original random ®elds �Û; T̂;W� are discretised into a vector of jointly distributed variables V (Li and Der
Kiureghian, 1993). This is schematised in Fig. 1 for a generic ®eld of material properties. The correlation
coe�cient of the variables V is obtained from the autocorrelation function of the random ®eld W. By means
of adequate transformations (Nataf, 1962; Rosenblatt, 1952; Der Kiureghian and Liu, 1986; Ditlevsen and
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Madsen, 1996), the variables V can be converted into a set of uncorrelated, standard normally distributed
variables S. The cumulative distribution of Q can then be expressed as

Pr�Q < q0� �
Z

q<q0

fQ�q�dq

�
Z

q�s�<q0

/n�s; I�ds; �2�

where / is the n-variate standard normal probability distribution function, I is the identity matrix and
accounts for the correlation matrix of S in this context, and the dependence of q on s is provided by a
(generally non-linear) ®nite element algorithm.

As the shape of the domain q�s� < q0 is non-linear, the integral proposed in Eq. (2) cannot be evaluated
exactly. A traditional alternative is the Monte-Carlo method, the computational cost of which grows ex-
orbitantly when the tails of the distribution of Q are studied. The essence of the ®nite element reliability
method (Der Kiureghian and Ke, 1988) is to approximate the surface q�s� � q0 by low-order surfaces at the
realisations of S, which exhibit the largest probability density. The domain q�s� < q0 is consequently ap-
proximated by a number of subsets. The approximation points are referred to as b-points and are denoted
by sb. The distance of these points to the origin is traditionally known as b-reliability index. If a linear
approximation is used, the probability contribution of each approximating subset qi�s� < 0 to the cumu-
lative distribution of Q is given by

Pi � U�ÿbi�; �3�
where U represents the one-dimensional standard normal cumulative distribution function. The contri-
bution of k subsets to the cumulative distribution of Q is given by the expression

Pi1;...;ik � 1ÿ Uk�b; qb�; �4�
where Uk is the k-variate standard normal cumulative distribution function and b is a vector containing the
k b-indices considered. If the unitary a-vectors are introduced through the notation

sb � ÿba �5�
then the correlation matrix qb of the approximating subsets is obtained from

Fig. 1. Discretisation of the random ®eld of material properties.
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qb
ilim � aT

il
aim : �6�

Direct evaluation of Eq. (4) can be costly when the dimension of b is large. As an alternative, bounds for
Pi1;...;ik have been devised (Ditlevsen and Madsen, 1996) as well as ®rst-order approximations (Hohenbichler
and Rackwitz, 1983).

Finding the b-points is the main task in the reliability method. Due to the spherical symmetry of the
uncorrelated standard normal space, the local maxima of the probability density function on q�s� � q0

coincide with the local minima of the distance of this surface to the origin. The computation of the b-points
is consequently formulated as a constrained optimisation problem

minimise ksk;
subject to q�s� � q0:

�
�7�

The solution of this problem is found through an iterative algorithm in the form

s�k�1� � G s�k�; q�k�;
oq�k�

os

� �
; �8�

where k now accounts for the iteration number and G represents a suitable procedure. A comprehensive
review of optimisation algorithms with the application to reliability problems can be found in Liu and
Kiureghian (1991).

3. The mechanical transformation

3.1. Computation of the equilibrium path

A ®nite element discretisation of the governing equations can be obtained from the principle of virtual
work,Z

X
deTrdXÿ

Z
oX

duT k̂tdC � 0: �9�

When the variation du is not explicitly required to satisfy the constraints of û, these are imposed through
Lagrange multipliers. In this study, it is considered that these constraints are present at the boundary and
are given by a set of n a�ne relations

Giuÿ gi � 0 on oXi; i � 1; . . . ; n: �10�
It is remarked that the subsets oXi need not be connected and may overlap, as long as the constraints are
mutually consistent. Incorporation of the essential boundary condition (10) into Eq. (9) leads toZ

X
deTrdXÿ

Z
oX

duT k̂tdC�
Xn

i�1

Z
oXi

d lT
i �Giu

� ÿ gi�
�

dC � 0; �11�

where li represents a set of Lagrange multipliers. Eq. (11) is reworked asZ
X

deTrdXÿ
Z

oX
duT k̂tdC�

Xn

i�1

Z
oXi

dlT
i �Giu

�
ÿ gi�dC�

Z
oXi

duTGT
i li dC

�
� 0: �12�

A discrete form of this condition is stated by expanding the displacement ®eld in ®nite elements as

u � Na: �13�
The transformation from the displacement vector to the deformation tensor is represented as

7148 M.A. Guti�errez, R. De Borst / International Journal of Solids and Structures 37 (2000) 7145±7159



e � Lu �14�
with L as the kinematic di�erential operator. Upon introduction of discretisation, Eq. (14) is expressed as

e � LNa

� Ba; �15�
where the matrix B has been introduced that relates the deformation to discretisation coe�cients. The
Lagrange multipliers li are expanded in the same fashion

l � ~Nm: �16�
Replacing terms in Eq. (12) leads to the expressionZ

X
daTBTrdXÿ

Z
oX

daTkNT t̂dC�
Z

oX
dmT ~NT�GNaÿ g�dC�

Z
oX

daTNTGT ~NmdC � 0: �17�

Adopting the notations

f int �
Z

X
BTrdX;

f̂ �
Z

oX
NT t̂dC;

A �
Z

oX

~NTGNdC;

b �
Z

oX

~NTgdC;

�18�

Eq. (17) is more conveniently expressed as

daT�f int ÿ kf̂ � ATm� � dmT�Aaÿ b� � 0: �19�
As relation (19) must hold for any variation da and dm, the equilibrium algebraic equations

f int � ATm � kf̂;

Aa � b �20�
result, which represent an implicit relation for the equilibrium path. Solution of Eq. (20) is usually obtained
through an incremental procedure. The evolution of a generic quantity is represented by

s�Dsa � sa� Da; �21�
where s represents a path parameter, and a relation is introduced between the discretised incremental
loading parameter Dk and the incremental displacements Da,

l�Da;Dk; Ds� � 0: �22�
Introducing a vector of residuals

r �
Df int � ATDmÿ Dkf̂

ADaÿ Db

l�Da;Dk; Ds�

0@ 1A; �23�

the equilibrium path is computed with the Newton±Raphson method
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Da

Dm

Dk

0@ 1A�k�1�

�
Da

Dm

Dk

0@ 1A�k� ÿ oDfint

oDa
AT ÿf̂

A 0 0
ol

oDa
0 ol

oDk

24 35ÿ1

r�k�; �24�

where k stands for the iteration number. Procedure (24) is continued until convergence is attained with
respect to a proper norm.

The relation between the vector of nodal internal forces and the nodal displacements is given, from a
computational point of view, by an implicit relation

c�Dr;Dj; sr; sj;De; w� � 0; �25�
where j is a set of parameters representing the strain history. Eq. (25) requires the use of iterative algo-
rithms in general to solve the increment of stress and history parameters, which correspond to an increment
of strain. Implicit derivation of (25) provides the consistent tangent operator oDr=oDe, which is used in the
Jacobian matrix of Eq. (24) as

oDf int

oDa
�
Z

X
BT oDr

oDe
BdX: �26�

3.2. Di�erentiation of the equilibrium path

Execution of algorithm (8) requires the evaluation of the sensitivity of the measure q with respect to the
realisations of the standard normal variables s. This is formalised by means of the chain rule as

oq
os
� oq

o�u; k�
o�u; k�

ov

ov

os
: �27�

The term oq=o�u; k� can be obtained easily from the de®nition of q, and the term ov=os usually presents no
problems. The major di�culties are found in the evaluation of the term o�u; k�=ov. In general, the vector V

represents the discretisation of the material properties W, boundary constraints Û and traction pattern T̂.
The evaluation of the sensitivity of the equilibrium path with respect to the material properties can be
carried out e�ciently on each converged state of the Eq. (20) (Kleiber and Kowalczyk, 1995). Theoretical
and computational aspects of this evaluation for the particular case of softening solids can be found in
Guti�errez and De Borst (1998).

3.2.1. Di�erentiation with respect to the material properties
At a converged solution of the equilibrium path, residual (23) vanishes, that is

Df int � ATDmÿ Dkf̂ � 0;

ADaÿ Db � 0; �28�
l�Da;Dk; Ds� � 0:

Di�erentiation of Eq. (28) with respect to v yields

o
ov

Df int � AT o
ov

Dmÿ f̂
o
ov

Dk � 0;

A
o
ov

Da � 0; �29�
ol

oDa

o
ov

Da� ol
oDk

o
ov

Dk � 0:
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The derivative of the increment of internal forces in Eq. (29) is developed as

o
ov

Df int �
Z

X
BT o

ov
DrdX: �30�

The derivative of the stress increment with respect to v can be decomposed into two contributions

o
ov

Dr � o
ov

Dr

����
De

� oDr

oDe

o
ov

De; �31�

where the term oDr=oDe is recognised as the consistent tangent operator introduced in Eq. (26). Using the
relation �o=ov�De � B �o=ov�Da, Eqs. (29)±(31) form a system of linear simultaneous equations that can be
recast as

K AT ÿf̂

A 0 0
ol

oDa
0 ol

oDk

24 35 o
ov

Da
o
ov

Dm
o
ov

Dk

0@ 1A � ÿ RX BT o
ov

Dr
��
De

dX
0

0

0@ 1A: �32�

The ®rst term of the right-hand side of Eq. (32) is obtained by di�erentiating Eq. (25) with respect to v for
constant De,

oc
oDr

oc
oDj

� � o
ov

Dr
��
De

o
ov

Dj
��
De

 !
� ÿ oc

osr
oc
osj

oc
ow

� � o
ov

sr
o
ov

sj
o
ov

w

0@ 1A; �33�

and solving for �o=ov�DrjDe. The terms �o=ov�sr and �o=ov�sj are known from the previous loading step and
introduce the e�ects of the deformation history in the computation of the derivatives. The term �o=ov�w
depends on the spatial coordinate of the integration point considered.

Next, solution of Eq. (32) provides the derivatives �o=ov�Da, �o=ov�Dm and �o=ov�Dk. Through the
relation e � Ba, the derivatives are computed of the incremental deformation tensor �o=ov�De and, sub-
sequently, those of Dr and Dj by di�erentiating the constitutive relation (25).

By means of updating relation (21), the derivatives �o=ov�s�Dsa, �o=ov�s�Dsm and �o=ov�s�Dsk are com-
puted. Similarly, the derivatives of s�Dsr and s�Dsj are updated for use in Eq. (33) in the next loading step.

3.2.2. Di�erentiation with respect to the boundary constraints
Following the same strategy as for the material properties, derivatives can be computed of the equi-

librium path with respect to the boundary constraints if these have been imposed through Lagrange
multipliers. In the ensuing development, the boundary constraints are represented in the discrete form
elaborated in Section 3.1

Aaÿ b � 0: �34�
Only the computation of derivatives with respect to b is considered in this study. An extension of this
development to handle derivatives of components of A is straightforward.

The formulation presented in the previous section is used again to evaluate the derivatives with respect to
b. The terms oc=ow and �o=ov�w disappear from Eq. (33), which attains the form

oc
oDr

oc
oDj

� � o
ob

Dr
��
De

o
ob

Dj
��
De

 !
� ÿ oc

osr
oc
osj

� � o
ob

sr
o
ob

sj

� �
: �35�

At the ®rst loading step, the second expression in Eq. (29), which accounts for the di�erentiated version of
Eq. (34), must include the derivatives of b and consequently attains the form
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A
o
ob

Da � I: �36�

Similarly, since both �o=ob�0r and �o=ob�0j vanish, the term �o=ob�DrjDe obtained from Eq. (35) vanishes as
well. The counterpart of Eq. (32) thus reads

K AT ÿf̂

A 0 0
ol

oDa
0 ol

oDk

24 35 o
ob

Da
o
ob

Dm
o
ob

Dk

0@ 1A � 0

I
0

0@ 1A; �37�

and its solution yields the derivatives of the equilibrium path with respect to b at the ®rst loading step. At
the subsequent steps, the constraint equation is of the form

ADa � 0 �38�
while the derivatives �o=ob�sr and �o=ob�sj are non-zero. Consequently, the term �o=ob�DrjDe is also non-
zero and the incremental derivatives of the equilibrium path are obtained from

K AT ÿf̂

A 0 0
ol

oDa
0 ol

oDk

24 35 o
ob

Da
o
ob

Dm
o
ob

Dk

0@ 1A � ÿ RX BT o
ob

Dr
��
De

dX
0

0

0@ 1A: �39�

The total derivatives of the equilibrium path as well as those of the internal variables are updated as in the
previous section, by means of Eq. (21).

4. Strain localisation in viscoplastic solids

The relation between material heterogeneity and shear band patterning is studied by means of the biaxial
tension test of Fig. 2. This kind of (tension or compression) biaxial tests have been the subject of several
experimental (Desrues (1984) among others) as well as numerical studies (De Borst, 1989, 1993; Sluys, 1992,
among others). A relevant characteristic of this problem from a computational point of view is that an
imperfection is needed in order to trigger localisation. Such an imperfection is usually supplied by reducing
the strength within a patch of ®nite elements. The computed equilibrium path is obviously dependent on the
chosen imperfection and the objectivity of the calculation is therefore questionable. Since the actual lo-
calisation pattern observed in experiments is determined by the ductility and heterogeneity, it is meaningful
to consider a random distribution of the material properties ®eld, and by means of the techniques described
in this paper, to study the statistics of the equilibrium path.

The specimen considered has a size of 120� 60 mm2, a thickness of 5 mm and is composed of a von
Mises, Duvaut±Lions viscoplastic material (Duvaut and Lions, 1972). The constitutive equations of this
model are expressed as

_r � D_eÿ 1

f
�rÿ rp�;

_j � ÿ 1

f
�jÿ jp�;

�40�

where f is a relaxation time related to the viscosity, and rp and jp are the stress tensor and history pa-
rameters corresponding to a standard, rate-independent plasticity model. These equations are valid when
the yield function is positive

f �r; j� > 0 �41�
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otherwise, the material point is in the elastic regime

_r � D_e: �42�
The computation of the equilibrium path and the sensitivity to the material properties has been elaborated
in Guti�errez and De Borst (1998, 1999a). The domain is discretised into a structured mesh of 28� 14 eight-
noded, plane-stress ®nite elements with a four-point Gauss±Legendre integration quadrature. Linear
constraint equations are used at the top and bottom to ensure that both boundaries remain parallel during
the loading process, which is controlled by an indirect displacement control procedure such that the dis-
tance between both ends increases with a velocity of 1 mm/s.

Young's modulus and the initial yield stress are logarithmic-normally distributed according to the
medians

Ym � 20000 N=mm2; �43�
R0m � 100 N=mm2:

The hardening (softening) modulus obeys a normal distribution with

lH � ÿ500 N=mm2: �44�
The coe�cient of variation is C � 0:1 for all properties and an exponential autocorrelation function with
the correlation length lc � 20 mm is considered. Each random ®eld is discretised into 98 subdomains
corresponding with patches of 2� 2 ®nite elements. Poisson's ratio has been taken to be m � 0:2.

The energy dissipation in the time interval �0 s; 0:75 s� is studied. A generic energy dissipation threshold
w0 � 12000 Nmm is considered and the adopted time step is Dt � 0:0125 s. Symmetric or asymmetric

Fig. 2. Biaxial tension test: static scheme, ®nite element mesh and random ®eld mesh.
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b-points are found by starting optimisation algorithm (8) from symmetric or asymmetric realisations, re-
spectively.

For the relaxation time f � 0:0015 s, the asymmetric b-points have ba � 3:6693, which corresponds to a
joint probability Pa � 2:29� 10ÿ4. The correlation coe�cient of the approximating failure subsets is
q � 0:68. The symmetric b-point exhibits bs � 4:085, which indicates a probability Ps � 2:20� 10ÿ5 for the
symmetric mode. It is observed that the probabilistic contribution of the asymmetric modes is 10 times
larger than that of the symmetric mode. The respective pro®les of shear bands are presented in Fig. 3.

If the relaxation time is increased to f � 0:0030 s, the correlation coe�cient of the two homologous,
asymmetric shear bands becomes q � 0:84. With the computed ba � 4:2715, this leads to a probability
contribution Pa � 1:76� 10ÿ5. The asymmetric mode is found at a distance bs � 4:3489, which is in the
same order of magnitude as ba and provides a contribution Ps � 6:84� 10ÿ6. The width of the shear bands
(Fig. 4) is increased with respect to the case f � 0:0015 s.

If a larger relaxation time (f � 0:0045 s) is considered, the computed b-points are closer to each other.
The reliability indices now read ba � 4:4598 and bs � 4:4578, and the correlation coe�cient of the ho-
mologous asymmetric points is q � 0:93. The probability contribution of the asymmetric modes is reduced
to Pa � 6:56� 10ÿ6 and that of the symmetric mode remains in the same order of magnitude as in the
previous case, Ps � 4:14� 10ÿ6. The resulting localisation patterns are shown in Fig. 5.

It is observed that larger relaxation times lead to lower probabilistic contributions to the energy dissi-
pation. This result could be expected, since a larger relaxation time usually corresponds to a larger energy
dissipation during failure.

Fig. 3. Analysis of energy dissipation: pro®les of equivalent plastic strain at the asymmetric (left) and the symmetric (right) b-points

with f � 0:0015 s.
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5. Damage localisation in quasi-brittle materials

The in¯uence of randomness of the boundary constraints in the evolution of damage is studied for a
tensile test on a double-edge-notched specimen of concrete. The static scheme is depicted in Fig. 6. Ex-
perience has shown (Hordijk, 1991; Schlangen, 1993; van Mier, 1997) that such tests are sensitive to the
boundary conditions. If the loading platens are kept ®xed and if no extra imperfection is imposed, ®nite
element simulations of this test exhibit a symmetric evolution of damage from both notches. Numerical
inaccuracies, however, tend to break this symmetry during the post-peak branch. This observation is
consistent with the unstable behaviour argumented by Ba�zant and Cedolin (1991) and by Rots and De
Borst (1989). On the other hand, experiments show that the deformation pattern is usually asymmetric after
the peak load is reached, and evolves to a symmetric pattern upon further deformation. If the loading
platens are allowed to rotate, usually asymmetric evolutions of damage from one notch are observed. This
behaviour has successfully been reproduced by means of the ®nite element reliability method (Guti�errez and
De Borst, 1999b). The results presented in that are complemented in this paper by including the in¯uence of
errors in the horizontality of ®xed loading platens.

A gradient-enhanced damage model (Peerl�õngs et al., 1996) is adopted. The stress±deformation relation
is expressed as

r � �1ÿ x�De; �45�
where x 2 �0; 1� is a damage parameter that is a function of a history parameter j. This history parameter is
formalised by the Kuhn±Tucker conditions,

Fig. 4. Analysis of energy dissipation: pro®les of equivalent plastic strain at the asymmetric (left) and the symmetric (right) b-points

with f � 0:0030 s.
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_j P 0 eeq ÿ j6 0 _j�eeq ÿ j� � 0; �46�
in which eeq represents an averaged measure of the equivalent strain eeq and is obtained from the di�usion
equation

eeq ÿ 1

2
l2

sr2eeq � eeq: �47�

The parameter ls is an internal length scale which quanti®es the size of the zone in which damage evolves.
Following Guti�errez and De Borst (1999b), Young's modulus has been taken to be E � 18000 MPa,

m � 0:2, and the coe�cients a and b governing the damage evolution law,

x�j; j0� � 1ÿ j0

j �1ÿ a� � a exp�ÿb�jÿ j0��� � if j > j0;
0 otherwise;

�
�48�

are a � 0:96 and b � 350. The parameter n controls the sensitivity to tension with respect to that in
compression in the de®nition of the equivalent strain

eeq � nÿ 1

2n�1ÿ 2m� I1 � 1

2n

��������������������������������������������������
�nÿ 1�2
�1ÿ 2m�2 I2

1 �
2n

�1� m�2 J2

s
; �49�

where the strain tensor invariants are given by

Fig. 5. Analysis of energy dissipation: pro®les of equivalent plastic strain at the asymmetric (left) and the symmetric (right) b-points

with f � 0:0045 s.
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I1 � e1 � e2 � e3; �50�
J2 � �e1 ÿ e2�2 � �e2 ÿ e3�2 � �e3 ÿ e1�2;

and it is taken as n � 10. The threshold for damage initiation is considered to follow a Weibull distribution
according to the parameters

jmin
0 � 1:5� 10ÿ4;

u � 2:1� 10ÿ4; �51�
k � 2;

and an exponential correlation function is used with a correlation length lc � 10 mm.
The relative deformation of the extensometric gauges depicted in Fig. 6 can be used to de®ne a state

function as

Z�Dl;Dr� � Dr ÿ Dl

�Dr � Dl�=2
; �52�

where Dr and Dl represent the random extensions of the right and the left gauge, respectively. The de-
nominator in (52) equals the path parameter s, as a consequence of the simulated loading servo control.
Di�erent points of the cumulative distribution function of Z can be obtained by running algorithm (8) for

Fig. 6. Schematic representation of a tensile test on a double-edge-notched specimen (dimensions in mm).
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di�erent threshold values z0. Due to the symmetry of the problem, it is meaningful to study the probability
that the absolute value of di�erence (52) exceeds the threshold. A ®rst-order approximation of this prob-
ability is readily expressed as

Pr�jZj > z0� � Pr�Z < ÿz0� � Pr�Z > z0�
� 2U�ÿb�: �53�

The statistics of the relative di�erence of gauge extensions has been studied at two di�erent stages of the
post-peak equilibrium path, namely for �dr � dl�=2 � 0:008 mm and �dr � dl�=2 � 0:014 mm, which ap-
proximately correspond to 100% and 75% of the peak load, respectively. In the ®rst simulation, it has been
assumed that the upper platen is perfectly horizontal. The results, which are shown in Table 1, show that
the probability of exceeding a certain degree of asymmetry (quanti®ed by z0) decreases as the average
deformation progresses.

In practice, the upper platen is not perfectly horizontal. The in¯uence of a possible horizontality error
can be computed by considering that the inhomogeneous term of the selected constraint equations is
randomly distributed. In this case, it is considered that the di�erence q between the vertical displacement of
the upper corners is normally distributed with mean lQ � 0 mm. Two standard deviations
rQ � 5� 10ÿ4 mm and rQ � 5� 10ÿ3 mm have been studied. For the small value of rQ, the statistics of the
damage evolution, which are summarised in Table 2, do not essentially di�er from those obtained with a
perfectly horizontal plate.

A dramatic increase of the asymmetry probability is, however, observed when the scatter of the hori-
zontality error is increased to rQ � 5� 10ÿ3 mm (Table 3). For the particular case �dr � dl�=2 � 0:014 mm

Table 1

Analysis of damage evolution: results for perfectly horizontal loading platen

�dr � dl�=2 (mm) z0 b Pr�jZj > z0�
0.008 0.3 0.817 0.414

0.15 0.397 0.692

0.014 0.3 1.135 0.256

0.15 0.572 0.568

Table 2

Analysis of damage evolution: results for horizontality error in the loading platen with rQ � 5� 10ÿ4 mm

�dr � dl�=2 (mm) z0 b Pr�jZj > z0�
0.008 0.3 0.805 0.420

0.15 0.392 0.694

0.014 0.3 1.119 0.264

0.15 0.562 0.574

Table 3

Analysis of damage evolution: results for horizontality error in the loading platen with rQ � 5� 10ÿ3 mm

�dr � dl�=2 (mm) z0 b Pr�jZj > z0�
0.008 0.3 0.421 0.674

0.15 0.207 0.836

0.014 0.3 0.570 0.562

0.15 0.285 0.776
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and z0 � 0:30, the cumulative distribution of the asymmetry is doubled. This result shows that small defects
in the orientation of the loading plate can be of capital importance for the asymmetry in the evolution of
the damage pattern during failure.

6. Conclusions

Stochastic aspects of localised strain or damage can be evaluated with the ®nite element reliability
method. The in¯uence of material as well as boundary constraint imperfections can be studied. In par-
ticular, stochastic boundary constraints can be considered in an e�cient manner if they are imposed
through Lagrange multipliers. The evaluation of the sensitivity to the basic random variables, which is
needed in the reliability method, is straightforward. Numerical simulations of mode-I as well as mode-II
localisation phenomena demonstrate how the introduction of stochastic concepts reveals phenomena that
otherwise would remain unnoticed.
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